Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Band gap blue shift of InGaAs/InP multiple quantum wells by different dielectric film coating and annealing

Identifieur interne : 001684 ( Chine/Analysis ); précédent : 001683; suivant : 001685

Band gap blue shift of InGaAs/InP multiple quantum wells by different dielectric film coating and annealing

Auteurs : RBID : Pascal:06-0426426

Descripteurs français

English descriptors

Abstract

Band gap blue shift of InGaAs/InP multiple quantum well (MQW) structures by impurity-free vacancy disordering (IFVD) is studied by photoluminescence (PL) and secondary ion mass spectrum (SIMS). SiO2, Si3N4, and spin on glass (SOG) were used for the dielectric layers to create the vacancies. The results indicate that the band gap blue shift varies with the different dielectric layers and depends on the annealing temperature. The blue shift is also related to the combination of the layers between dielectric and cladding layers. The SIMS profile shows that the dielectric capped layer and rapid thermal annealing caused the quantum well intermixing, which results in the band gap blue shift. Optimum condition can be reached by choosing suitable dielectric layer and annealing condition.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:06-0426426

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Band gap blue shift of InGaAs/InP multiple quantum wells by different dielectric film coating and annealing</title>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J. Zhao</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>College of Physics and Electronic Information Science, Tianjin Normal University</s1>
<s2>Tianjin 300074</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Tianjin 300074</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>College of Physics and Electronic Information Science, Tianjin Normal University</s1>
<s2>Tianjin 300074</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Tianjin 300074</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Feng, Z C" uniqKey="Feng Z">Z. C. Feng</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Graduate Institute of Electro-Optical Engineering and Department of Electrical Engineering, National Taiwan University</s1>
<s2>Taipei 106-17</s2>
<s3>TWN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Taïwan</country>
<wicri:noRegion>Taipei 106-17</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, J L" uniqKey="Chen J">J. L. Chen</name>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>Department of Physics, National University of Singapore</s1>
<s2>119260 Singapore</s2>
<s3>SGP</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
<author>
<name sortKey="Liu, R" uniqKey="Liu R">R. Liu</name>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>Department of Physics, National University of Singapore</s1>
<s2>119260 Singapore</s2>
<s3>SGP</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
<author>
<name sortKey="Xu, G" uniqKey="Xu G">G. Xu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Materials Science and Engineering, McMaster University</s1>
<s2>Hamilton, L8S 4L7</s2>
<s3>CAN</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Hamilton, L8S 4L7</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">06-0426426</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0426426 INIST</idno>
<idno type="RBID">Pascal:06-0426426</idno>
<idno type="wicri:Area/Main/Corpus">008937</idno>
<idno type="wicri:Area/Main/Repository">009048</idno>
<idno type="wicri:Area/Chine/Extraction">001684</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Blue shift</term>
<term>Coatings</term>
<term>Crystal growth from vapors</term>
<term>Dielectric thin films</term>
<term>Experimental study</term>
<term>GSMBE method</term>
<term>Gallium arsenides</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Molecular beam epitaxy</term>
<term>Multiple quantum well</term>
<term>Nanostructured materials</term>
<term>Photoluminescence</term>
<term>Rapid thermal annealing</term>
<term>Secondary ion mass spectra</term>
<term>Vacancies</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Etude expérimentale</term>
<term>Déplacement vers le bleu</term>
<term>Recuit thermique rapide</term>
<term>Photoluminescence</term>
<term>Spectre SIMS</term>
<term>Lacune</term>
<term>Méthode GSMBE</term>
<term>Epitaxie jet moléculaire</term>
<term>Croissance cristalline en phase vapeur</term>
<term>Indium arséniure</term>
<term>Gallium arséniure</term>
<term>Semiconducteur III-V</term>
<term>Puits quantique multiple</term>
<term>Nanomatériau</term>
<term>Couche mince diélectrique</term>
<term>Revêtement</term>
<term>InGaAs</term>
<term>As Ga In</term>
<term>Substrat InP</term>
<term>8107S</term>
<term>8140E</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Band gap blue shift of InGaAs/InP multiple quantum well (MQW) structures by impurity-free vacancy disordering (IFVD) is studied by photoluminescence (PL) and secondary ion mass spectrum (SIMS). SiO2, Si
<sub>3</sub>
N
<sub>4</sub>
, and spin on glass (SOG) were used for the dielectric layers to create the vacancies. The results indicate that the band gap blue shift varies with the different dielectric layers and depends on the annealing temperature. The blue shift is also related to the combination of the layers between dielectric and cladding layers. The SIMS profile shows that the dielectric capped layer and rapid thermal annealing caused the quantum well intermixing, which results in the band gap blue shift. Optimum condition can be reached by choosing suitable dielectric layer and annealing condition.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>498</s2>
</fA05>
<fA06>
<s2>1-2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Band gap blue shift of InGaAs/InP multiple quantum wells by different dielectric film coating and annealing</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Proceedings of the Third Asian conference on chemical vapor deposition (third Asian-CDV), Taipei, Taiwan, November 12-14, 2004</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>ZHAO (J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CHEN (J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FENG (Z. C.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CHEN (J. L.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LIU (R.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>XU (G.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>FENG (Zhe Chuan)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>CHEN (Chia-Fu)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>KUO (Cheng-Tzu)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>WILLIAMS (Ken)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>SHAN (Wei)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>College of Physics and Electronic Information Science, Tianjin Normal University</s1>
<s2>Tianjin 300074</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Graduate Institute of Electro-Optical Engineering and Department of Electrical Engineering, National Taiwan University</s1>
<s2>Taipei 106-17</s2>
<s3>TWN</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Physics, National University of Singapore</s1>
<s2>119260 Singapore</s2>
<s3>SGP</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Materials Science and Engineering, McMaster University</s1>
<s2>Hamilton, L8S 4L7</s2>
<s3>CAN</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>National Taiwan University</s1>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>National Chiao Tung University</s1>
<s3>TWN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Renishaw</s1>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>Lawrence Berkeley National Laboratory</s1>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA15>
<fA20>
<s1>179-182</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000134656130340</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0426426</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>CHE</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Band gap blue shift of InGaAs/InP multiple quantum well (MQW) structures by impurity-free vacancy disordering (IFVD) is studied by photoluminescence (PL) and secondary ion mass spectrum (SIMS). SiO2, Si
<sub>3</sub>
N
<sub>4</sub>
, and spin on glass (SOG) were used for the dielectric layers to create the vacancies. The results indicate that the band gap blue shift varies with the different dielectric layers and depends on the annealing temperature. The blue shift is also related to the combination of the layers between dielectric and cladding layers. The SIMS profile shows that the dielectric capped layer and rapid thermal annealing caused the quantum well intermixing, which results in the band gap blue shift. Optimum condition can be reached by choosing suitable dielectric layer and annealing condition.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07S</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A40E</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Déplacement vers le bleu</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Blue shift</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Recuit thermique rapide</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Rapid thermal annealing</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Spectre SIMS</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Secondary ion mass spectra</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Lacune</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Vacancies</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Méthode GSMBE</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>GSMBE method</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Método GSMBE</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Croissance cristalline en phase vapeur</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Crystal growth from vapors</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Indium arséniure</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Puits quantique multiple</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Multiple quantum well</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Pozo cuántico múltiple</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Couche mince diélectrique</s0>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Dielectric thin films</s0>
<s5>20</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Revêtement</s0>
<s5>21</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Coatings</s0>
<s5>21</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>As Ga In</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Substrat InP</s0>
<s4>INC</s4>
<s5>54</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>8107S</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8140E</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>48</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>48</s5>
</fC07>
<fN21>
<s1>282</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Asian conference on chemical vapor deposition</s1>
<s2>3</s2>
<s3>Taipei TWN</s3>
<s4>2004-11-12</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001684 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 001684 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:06-0426426
   |texte=   Band gap blue shift of InGaAs/InP multiple quantum wells by different dielectric film coating and annealing
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024